Agriculture development through the use of biotechnology-بائیو ٹیکنالوجی سے زراعت میں ترقی

Agriculture development through the use of biotechnology-بائیو ٹیکنالوجی  سے زراعت میں ترقی

Agriculture plays an important role in the national economy of Pakistan, where most of the rapidly increasing population resides in rural areas and depends on agriculture for subsistence. Biotechnology has considerable potential for promoting the efficiency of crop improvement, food production, and poverty reduction. The use of modern biotechnology started in Pakistan in 1985. Currently, there are 29 biotech centers/institutes in the country. However, few centers have appropriate physical facilities and trained manpower to develop genetically modified (GM) crops. Most of the activities have been on rice and cotton, which are among the top 5 crops of Pakistan. Biotic (virus/bacterial/insect) and abiotic (salt) resistant and quality (male sterility) genes have already been incorporated in some crop plants. Despite acquiring the capacity to produce transgenic plants, no GM crops, either produced locally or imported, have been released in the country. Pakistan is a signatory to the World Trade Organization, Convention on Biological Diversity, and Cartagena protocols. Several legislations under the Agreement on Trade-Related Aspects of Intellectual Property Rights have been promulgated in the country. National Biosafety Guidelines have been promulgated in April 2005. The Plant Breeders Rights Act, Amendment in Seed Act-1976, and Geographical Indication for Goods are still passing through discussion, evaluation, and analysis phases. Meanwhile, an illegal GM crop (cotton) has already been sneaked into farmer's fields. Concerted and coordinated efforts are needed among various ministries for implementation of regulation and capacity building for import/export and local handling of GM crops. Pakistan could easily benefit from the experience of Asian countries, especially China and India, where conditions are similar and the agriculture sector is almost like that of Pakistan. Thus, the exchange of information and experiences is important among these nations.

Agriculturalists started conducting selective breeding of crops before having a thorough understanding of the basis of genetics. Gregor Mendel's discoveries explaining how traits pass from parents to offspring shed new light on the matter. Mendel's work showed that genes separate during the formation of gametes, and unite randomly during fertilization; he also showed that genes are transmitted independently of one another to offspring. This understanding of the way that plants and animals acquire traits form parents created the potential for people to selectively breed crops and livestock. Gregor Mendel's discovery revolutionized agriculture by launching the development of selective cross breeding with a comprehensive understanding of the underlying mechanisms of inheritance.
Selective Cross Breeding
In traditional plant breeding, new varieties are developed either by selecting plants with desirable characteristics or by combining qualities from two closely related plants through selective breeding. These features may for example be resistance to a particular pest or disease, or tolerance to climatic conditions. Pollen with the genes for a desired trait is transferred from plants of one crop variety to the flowers of another variety with other desirable traits. Eventually, through careful selection of offspring, the desired trait will appear in a new variety of plants. Traditional plant breeding has produced numerous highly successful new varieties of crops over the centuries. There have also been many less than successful crosses made. In traditional breeding, crosses are often made in a relatively uncontrolled manner. The breeder chooses the parents to cross, but at the genetic level, the results are unpredictable. DNA from the parents recombines randomly, and desirable traits such as pest resistance may be bundled with undesirable traits, such as lower yield or poor quality. The parent plants must be closely related to produce offspring. Traditional breeding programs are time-consuming, often taking decades to produce new viable crop varieties, and labor-intensive. A great deal of effort is required to separate undesirable from desirable traits, and this is not always economically practical. Many potential benefits are lost along the way, as plants that fail to demonstrate the introduced characteristics are discarded. Traditional plant breeding takes on average 12-15 years to produce a new crop variety.

Agricultureuse of biotechnologyAgriculture development

Post a Comment

0 Comments